Note: This is the 2020–2021 eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or .
Program Requirements
This program provides students with a solid training in both computer science and statistics together with the necessary mathematical background. As statistical endeavours involve ever increasing amounts of data, some students may want training in both disciplines.
Program Prerequisites
Students entering the Joint Major in Statistics and Computer Science are normally expected to have completed the courses below or their equivalents. Otherwise they will be required to make up any deficiencies in these courses over and above the 72 credits of required courses.
-
MATH 133 Linear Algebra and Geometry (3 credits)
Overview
Mathematics & Statistics (Sci) : Systems of linear equations, matrices, inverses, determinants; geometric vectors in three dimensions, dot product, cross product, lines and planes; introduction to vector spaces, linear dependence and independence, bases. Linear transformations. Eigenvalues and diagonalization.
Terms: Fall 2020, Winter 2021, Summer 2021
Instructors: Bélanger-Rioux, Rosalie; Ball, Gavin; Aigner, Florian; Przytycki, Piotr (Fall) Kelome, Djivede (Winter) Munro, Zachary (Summer)
3 hours lecture, 1 hour tutorial
Prerequisite: a course in functions
Restriction A: Not open to students who have taken MATH 221 or CEGEP objective 00UQ or equivalent.
Restriction B: Not open to students who have taken or are taking MATH 123, except by permission of the Department of Mathematics and Statistics.
Restriction C: Not open to students who are taking or have taken MATH 134.
-
MATH 140 Calculus 1 (3 credits)
Overview
Mathematics & Statistics (Sci) : Review of functions and graphs. Limits, continuity, derivative. Differentiation of elementary functions. Antidifferentiation. Applications.
Terms: Fall 2020, Winter 2021, Summer 2021
Instructors: Trudeau, Sidney; Ghaswala, Tyrone; Albanese, Michael (Fall) Fortier, Jérôme (Winter) Chen, Linan (Summer)
3 hours lecture, 1 hour tutorial
Prerequisite: High School Calculus
Restriction: Not open to students who have taken MATH 120, MATH 139 or CEGEP objective 00UN or equivalent
Restriction: Not open to students who have taken or are taking MATH 122, except by permission of the Department of Mathematics and Statistics
Each Tutorial section is enrolment limited
-
MATH 141 Calculus 2 (4 credits)
Overview
Mathematics & Statistics (Sci) : The definite integral. Techniques of integration. Applications. Introduction to sequences and series.
Terms: Fall 2020, Winter 2021, Summer 2021
Instructors: Fortier, Jérôme; Sabok, Marcin (Fall) Trudeau, Sidney; Albanese, Michael; Ghaswala, Tyrone (Winter) Abdenbi, Brahim; Zenz, Peter (Summer)
Required Courses (51 credits)
* Students who have sufficient knowledge in a programming language do not need to take COMP 202 but can replace it with an additional Computer Science complementary course.
** Students take either COMP 350 or MATH 317, but not both.
*** Students take either MATH 223 or MATH 236, but not both.
Both courses are equivalent as prerequisites for required and complementary Computer Science courses listed below.
-
COMP 202 Foundations of Programming (3 credits) *
Overview
Computer Science (Sci) : Introduction to computer programming in a high level language: variables, expressions, primitive types, methods, conditionals, loops. Introduction to algorithms, data structures (arrays, strings), modular software design, libraries, file input/output, debugging, exception handling. Selected topics.
Terms: Fall 2020, Winter 2021, Summer 2021
Instructors: Alberini, Giulia; Campbell, Jonathan (Fall) Alberini, Giulia; Campbell, Jonathan (Winter) Parekh, Deven (Summer)
3 hours
Prerequisite: a CEGEP level mathematics course
Restrictions: COMP 202 and COMP 208 cannot both be taken for credit. COMP 202 is intended as a general introductory course, while COMP 208 is intended for students interested in scientific computation. COMP 202 cannot be taken for credit with or after COMP 250
-
COMP 206 Introduction to Software Systems (3 credits)
Overview
Computer Science (Sci) : Comprehensive overview of programming in C, use of system calls and libraries, debugging and testing of code; use of developmental tools like make, version control systems.
Terms: Fall 2020, Winter 2021
Instructors: D'silva, Joseph (Fall) D'silva, Joseph; Vybihal, Joseph P (Winter)
-
COMP 250 Introduction to Computer Science (3 credits)
Overview
Computer Science (Sci) : Mathematical tools (binary numbers, induction, recurrence relations, asymptotic complexity, establishing correctness of programs), Data structures (arrays, stacks, queues, linked lists, trees, binary trees, binary search trees, heaps, hash tables), Recursive and non-recursive algorithms (searching and sorting, tree and graph traversal). Abstract data types, inheritance. Selected topics.
Terms: Fall 2020, Winter 2021
Instructors: Alberini, Giulia (Fall) Alberini, Giulia (Winter)
-
COMP 251 Algorithms and Data Structures (3 credits)
Overview
Computer Science (Sci) : Introduction to algorithm design and analysis. Graph algorithms, greedy algorithms, data structures, dynamic programming, maximum flows.
Terms: Fall 2020, Winter 2021
Instructors: Waldispuhl, Jérôme; Becerra, David (Fall) Becerra, David (Winter)
3 hours
Prerequisite: COMP 250
COMP 251 uses mathematical proof techniques that are taught in the corequisite course(s). If possible, students should take the corequisite course prior to COMP 251.
COMP 251 uses basic counting techniques (permutations and combinations) that are covered in MATH 240 but not in MATH 235. These techniques will be reviewed for the benefit of MATH 235 students.
Restrictions: Not open to students who have taken or are taking COMP 252.
-
COMP 273 Introduction to Computer Systems (3 credits)
Overview
Computer Science (Sci) : Number representations, combinational and sequential digital circuits, MIPS instructions and architecture datapath and control, caches, virtual memory, interrupts and exceptions, pipelining.
Terms: Fall 2020, Winter 2021
Instructors: Siddiqi, Kaleem (Fall) Lin, Hsiu-Chin; Kry, Paul (Winter)
3 hours
Corequisite: COMP 206.
-
COMP 302 Programming Languages and Paradigms (3 credits)
Overview
Computer Science (Sci) : Programming language design issues and programming paradigms. Binding and scoping, parameter passing, lambda abstraction, data abstraction, type checking. Functional and logic programming.
Terms: Fall 2020, Winter 2021
Instructors: Pientka, Brigitte (Fall) Miloslavov, Ivan; Si, Xujie (Winter)
-
COMP 330 Theory of Computation (3 credits)
Overview
Computer Science (Sci) : Finite automata, regular languages, context-free languages, push-down automata, models of computation, computability theory, undecidability, reduction techniques.
Terms: Fall 2020, Winter 2021
Instructors: Hatami, Hamed (Fall) Panangaden, Prakash (Winter)
3 hours
Prerequisite: COMP 251.
-
COMP 350 Numerical Computing (3 credits) **
Overview
Computer Science (Sci) : Computer representation of numbers, IEEE Standard for Floating Point Representation, computer arithmetic and rounding errors. Numerical stability. Matrix computations and software systems. Polynomial interpolation. Least-squares approximation. Iterative methods for solving a nonlinear equation. Discretization methods for integration and differential equations.
Terms: Fall 2020, Winter 2021
Instructors: Chang, Xiao-Wen (Fall)
-
COMP 360 Algorithm Design (3 credits)
Overview
Computer Science (Sci) : Advanced algorithm design and analysis. Linear programming, complexity and NP-completeness, advanced algorithmic techniques.
Terms: Fall 2020, Winter 2021
Instructors: Hatami, Hamed; Kemme, Bettina; Hosseini, Seyyed Aliasghar (Fall) Hosseini, Seyyed Aliasghar (Winter)
-
MATH 222 Calculus 3 (3 credits)
Overview
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2020, Winter 2021, Summer 2021
Instructors: Fortier, Jérôme; Kelome, Djivede (Fall) Vetois, Jerome (Winter) Trudeau, Sidney (Summer)
-
MATH 223 Linear Algebra (3 credits) ***
Overview
Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.
Terms: Fall 2020, Winter 2021
Instructors: Pichot, Michael (Fall) Abdenbi, Brahim (Winter)
-
MATH 235 Algebra 1 (3 credits)
Overview
Mathematics & Statistics (Sci) : Sets, functions and relations. Methods of proof. Complex numbers. Divisibility theory for integers and modular arithmetic. Divisibility theory for polynomials. Rings, ideals and quotient rings. Fields and construction of fields from polynomial rings. Groups, subgroups and cosets; group actions on sets.
Terms: Fall 2020
Instructors: Wise, Daniel (Fall)
Fall
3 hours lecture; 1 hour tutorial
Prerequisite: MATH 133 or equivalent
-
MATH 236 Algebra 2 (3 credits) ***
Overview
Mathematics & Statistics (Sci) : Linear equations over a field. Introduction to vector spaces. Linear mappings. Matrix representation of linear mappings. Determinants. Eigenvectors and eigenvalues. Diagonalizable operators. Cayley-Hamilton theorem. Bilinear and quadratic forms. Inner product spaces, orthogonal diagonalization of symmetric matrices. Canonical forms.
Terms: Winter 2021
Instructors: Tserunyan, Anush (Winter)
Winter
Prerequisite: MATH 235
-
MATH 242 Analysis 1 (3 credits)
Overview
Mathematics & Statistics (Sci) : A rigorous presentation of sequences and of real numbers and basic properties of continuous and differentiable functions on the real line.
Terms: Fall 2020
Instructors: Hundemer, Axel W (Fall)
-
MATH 314 Advanced Calculus (3 credits)
Overview
Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss. Fourier series with applications.
Terms: Fall 2020, Winter 2021
Instructors: Roth, Charles (Fall) Toth, John A (Winter)
-
MATH 317 Numerical Analysis (3 credits) **
Overview
Mathematics & Statistics (Sci) : Error analysis. Numerical solutions of equations by iteration. Interpolation. Numerical differentiation and integration. Introduction to numerical solutions of differential equations.
Terms: Fall 2020
Instructors: Bartello, Peter (Fall)
-
MATH 323 Probability (3 credits)
Overview
Mathematics & Statistics (Sci) : Sample space, events, conditional probability, independence of events, Bayes' Theorem. Basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions. Independence of random variables. Inequalities, weak law of large numbers, central limit theorem.
Terms: Fall 2020, Winter 2021, Summer 2021
Instructors: Sajjad, Alia; Wolfson, David B (Fall) Wolfson, David B; Sajjad, Alia (Winter) Kelome, Djivede (Summer)
-
MATH 324 Statistics (3 credits)
Overview
Mathematics & Statistics (Sci) : Sampling distributions, point and interval estimation, hypothesis testing, analysis of variance, contingency tables, nonparametric inference, regression, Bayesian inference.
Terms: Fall 2020, Winter 2021
Instructors: Asgharian, Masoud (Fall) Yang, Yi (Winter)
Fall and Winter
Prerequisite: MATH 323 or equivalent
Restriction: Not open to students who have taken or are taking MATH 357
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
-
MATH 423 Applied Regression (3 credits)
Overview
Mathematics & Statistics (Sci) : Multiple regression estimators and their properties. Hypothesis tests and confidence intervals. Analysis of variance. Prediction and prediction intervals. Model diagnostics. Model selection. Introduction to weighted least squares. Basic contingency table analysis. Introduction to logistic and Poisson regression. Applications to experimental and observational data.
Terms: Fall 2020
Instructors: Yang, Yi (Fall)
Complementary Courses (21 credits)
12 credits in Mathematics selected from:
* Students take either MATH 340 or MATH 350, but not both.
** MATH 578 and COMP 540 cannot both be taken for program credit.
+ In order to receive credit for MATH 204, students must take it before MATH 324.
-
MATH 204 Principles of Statistics 2 (3 credits) +
Overview
Mathematics & Statistics (Sci) : The concept of degrees of freedom and the analysis of variability. Planning of experiments. Experimental designs. Polynomial and multiple regressions. Statistical computer packages (no previous computing experience is needed). General statistical procedures requiring few assumptions about the probability model.
Terms: Winter 2021
Instructors: Genest, Christian (Winter)
Winter
Prerequisite: MATH 203 or equivalent. No calculus prerequisites
Restriction: This course is intended for students in all disciplines. For extensive course restrictions covering statistics courses see Section 3.6.1 of the Arts and of the Science sections of the calendar regarding course overlaps.
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
-
MATH 208 Introduction to Statistical Computing (3 credits)
Overview
Mathematics & Statistics (Sci) : Basic data management. Data visualization. Exploratory data analysis and descriptive statictics. Writing functions. Simulation and parallel computing. Communication data and documenting code for reproducible research.
Terms: Fall 2020
Instructors: Steele, Russell (Fall)
Prerequisite(s): MATH 133
-
MATH 308 Fundamentals of Statistical Learning (3 credits)
Overview
Mathematics & Statistics (Sci) : Theory and application of various techniques for the exploration and analysis of multivariate data: principal component analysis, correspondence analysis, and other visualization and dimensionality reduction techniques; supervised and unsupervised learning; linear discriminant analysis, and clustering techniques. Data applications using appropriate software.
Terms: Winter 2021
Instructors: Genest, Christian (Winter)
-
MATH 327 Matrix Numerical Analysis (3 credits)
Overview
Mathematics & Statistics (Sci) : An overview of numerical methods for linear algebra applications and their analysis. Problem classes include linear systems, least squares problems and eigenvalue problems.
Terms: Winter 2021
Instructors: Salvador, Tiago (Winter)
-
MATH 340 Discrete
Mathematics (3 credits) *
Overview
Mathematics & Statistics (Sci) : Discrete Mathematics and applications. Graph Theory: matchings, planarity, and colouring. Discrete probability. Combinatorics: enumeration, combinatorial techniques and proofs.
Terms: Winter 2021
Instructors: Fortier, Jérôme (Winter)
-
MATH 350 Honours Discrete Mathematics
(3 credits) *
Overview
Mathematics & Statistics (Sci) : Discrete mathematics. Graph Theory: matching theory, connectivity, planarity, and colouring; graph minors and extremal graph theory. Combinatorics: combinatorial methods, enumerative and algebraic combinatorics, discrete probability.
Terms: Fall 2020
Instructors: Norin, Sergey (Fall)
-
MATH 352 Problem Seminar (1 credit)
Overview
Mathematics & Statistics (Sci) : Seminar in Mathematical Problem Solving. The problems considered will be of the type that occur in the Putnam competition and in other similar mathematical competitions.
Terms: Fall 2020
Instructors: Norin, Sergey (Fall)
Prerequisite: Enrolment in a math related program or permission of the instructor. Requires departmental approval.
Prerequisite: Enrolment in a math related program or permission of the instructor.
-
MATH 410 Majors Project (3 credits)
Overview
Mathematics & Statistics (Sci) : A supervised project.
Terms: Fall 2020, Winter 2021, Summer 2021
Instructors: Kelome, Djivede; Khadra, Anmar; Choksi, Rustum; Steele, Russell (Fall) Kelome, Djivede; Genest, Christian; Steele, Russell; Neslehova, Johanna; Bub, Gil; Khalili Mahmoudabadi, Abbas (Winter) Asgharian, Masoud; Kelome, Djivede; Sajjad, Alia; Yang, Yi (Summer)
Prerequisite: Students must have 21 completed credits of the required mathematics courses in their program, including all required 200 level mathematics courses.
Requires departmental approval.
-
MATH 427 Statistical Quality Control (3 credits)
Overview
Mathematics & Statistics (Sci) : Introduction to quality management; variability and productivity. Quality measurement: capability analysis, gauge capability studies. Process control: control charts for variables and attributes. Process improvement: factorial designs, fractional replications, response surface methodology, Taguchi methods. Acceptance sampling: operating characteristic curves; single, multiple and sequential acceptance sampling plans for variables and attributes.
Terms: This course is not scheduled for the 2020-2021 academic year.
Instructors: There are no professors associated with this course for the 2020-2021 academic year.
-
MATH 447 Introduction to Stochastic Processes (3 credits)
Overview
Mathematics & Statistics (Sci) : Conditional probability and conditional expectation, generating functions. Branching processes and random walk. Markov chains, transition matrices, classification of states, ergodic theorem, examples. Birth and death processes, queueing theory.
Terms: Winter 2021
Instructors: Paquette, Elliot (Winter)
-
MATH 523 Generalized Linear Models (4 credits)
Overview
Mathematics & Statistics (Sci) : Exponential families, link functions. Inference and parameter estimation for generalized linear models; model selection using analysis of deviance. Residuals. Contingency table analysis, logistic regression, multinomial regression, Poisson regression, log-linear models. Multinomial models. Overdispersion and Quasilikelihood. Applications to experimental and observational data.
Terms: Winter 2021
Instructors: Neslehova, Johanna (Winter)
-
MATH 524 Nonparametric Statistics (4 credits)
Overview
Mathematics & Statistics (Sci) : Distribution free procedures for 2-sample problem: Wilcoxon rank sum, Siegel-Tukey, Smirnov tests. Shift model: power and estimation. Single sample procedures: Sign, Wilcoxon signed rank tests. Nonparametric ANOVA: Kruskal-Wallis, Friedman tests. Association: Spearman's rank correlation, Kendall's tau. Goodness of fit: Pearson's chi-square, likelihood ratio, Kolmogorov-Smirnov tests. Statistical software packages used.
Terms: Fall 2020
Instructors: Wolfson, David B (Fall)
-
MATH 525 Sampling Theory and Applications (4 credits)
Overview
Mathematics & Statistics (Sci) : Simple random sampling, domains, ratio and regression estimators, superpopulation models, stratified sampling, optimal stratification, cluster sampling, sampling with unequal probabilities, multistage sampling, complex surveys, nonresponse.
Terms: Winter 2021
Instructors: Steele, Russell (Winter)
-
MATH 545 Introduction to Time Series Analysis (4 credits)
Overview
Mathematics & Statistics (Sci) : Stationary processes; estimation and forecasting of ARMA models; non-stationary and seasonal models; state-space models; financial time series models; multivariate time series models; introduction to spectral analysis; long memory models.
Terms: This course is not scheduled for the 2020-2021 academic year.
Instructors: There are no professors associated with this course for the 2020-2021 academic year.
-
MATH 578 Numerical Analysis 1 (4 credits) **
Overview
Mathematics & Statistics (Sci) : Development, analysis and effective use of numerical methods to solve problems arising in applications. Topics include direct and iterative methods for the solution of linear equations (including preconditioning), eigenvalue problems, interpolation, approximation, quadrature, solution of nonlinear systems.
Terms: Fall 2020
Instructors: Gantumur, Tsog (Fall)
-
MATH 598 Topics in Probability and Statistics (4 credits)
Overview
Mathematics & Statistics (Sci) : This course covers a topic in probability and/or statistics.
Terms: Fall 2020, Winter 2021
Instructors: Stephens, David (Fall) Stephens, David (Winter)
Prerequisite(s): At least 30 credits in required or complementary courses from the Honours in Probability and Statistics program including MATH 356. Additional prerequisites may be imposed by the Department of Mathematics and Statistics depending on the nature of the topic.
Restriction(s): Requires permission of the Department of Mathematics and Statistics.
9 credits in Computer Science selected as follows:
At least 6 credits selected from:
-
COMP 424 Artificial Intelligence (3 credits)
Overview
Computer Science (Sci) : Introduction to search methods. Knowledge representation using logic and probability. Planning and decision making under uncertainty. Introduction to machine learning.
Terms: Winter 2021
Instructors: Cheung, Jackie (Winter)
-
COMP 462 Computational Biology Methods (3 credits)
Overview
Computer Science (Sci) : Application of computer science techniques to problems arising in biology and medicine, techniques for modeling evolution, aligning molecular sequences, predicting structure of a molecule and other problems from computational biology.
Terms: Fall 2020
Instructors: Blanchette, Mathieu (Fall)
-
COMP 526 Probabilistic Reasoning and AI (3 credits)
Overview
Computer Science (Sci) : Belief networks, Utility theory, Markov Decision Processes and Learning Algorithms.
Terms: This course is not scheduled for the 2020-2021 academic year.
Instructors: There are no professors associated with this course for the 2020-2021 academic year.
-
COMP 540 Matrix Computations (4 credits) **
Overview
Computer Science (Sci) : Designing and programming reliable numerical algorithms. Stability of algorithms and condition of problems. Reliable and efficient algorithms for solution of equations, linear least squares problems, the singular value decomposition, the eigenproblem and related problems. Perturbation analysis of problems. Algorithms for structured matrices.
Terms: Winter 2021
Instructors: Chang, Xiao-Wen (Winter)
-
COMP 547 Cryptography and Data Security (4 credits)
Overview
Computer Science (Sci) : This course presents an in-depth study of modern cryptography and data security. The basic information theoretic and computational properties of classical and modern cryptographic systems are presented, followed by a cryptanalytic examination of several important systems. We will study the applications of cryptography to the security of systems.
Terms: Fall 2020, Winter 2021
Instructors: Crepeau, Claude (Fall)
-
COMP 551 Applied Machine Learning (4 credits)
Overview
Computer Science (Sci) : Selected topics in machine learning and data mining, including clustering, neural networks, support vector machines, decision trees. Methods include feature selection and dimensionality reduction, error estimation and empirical validation, algorithm design and parallelization, and handling of large data sets. Emphasis on good methods and practices for deployment of real systems.
Terms: Fall 2020, Winter 2021
Instructors: Ravanbakhsh, Siamak (Fall) Rabbany, Reihaneh (Winter)
-
COMP 564 Advanced Computational Biology Methods and Research (3 credits)
Overview
Computer Science (Sci) : Fundamental concepts and techniques in computational structural biology, system biology. Techniques include dynamic programming algorithms for RNA structure analysis, molecular dynamics and machine learning techniques for protein structure prediction, and graphical models for gene regulatory and protein-protein interaction networks analysis. Practical sessions with state-of-the-art software.
Terms: Winter 2021
Instructors: Waldispuhl, Jérôme (Winter)
-
COMP 566 Discrete Optimization 1 (3 credits)
Overview
Computer Science (Sci) : Use of computer in solving problems in discrete optimization. Linear programming and extensions. Network simplex method. Applications of linear programming. Vertex enumeration. Geometry of linear programming. Implementation issues and robustness. Students will do a project on an application of their choice.
Terms: This course is not scheduled for the 2020-2021 academic year.
Instructors: There are no professors associated with this course for the 2020-2021 academic year.
-
COMP 567 Discrete Optimization 2 (3 credits)
Overview
Computer Science (Sci) : Formulation, solution and applications of integer programs. Branch and bound, cutting plane, and column generation algorithms. Combinatorial optimization. Polyhedral methods. A large emphasis will be placed on modelling. Students will select and present a case study of an application of integer programming in an area of their choice.
Terms: This course is not scheduled for the 2020-2021 academic year.
Instructors: There are no professors associated with this course for the 2020-2021 academic year.
The remaining Computer Science credits are selected from COMP courses at the 300 level or above (except COMP 396) and ECSE 508.