Program Requirements
Required Courses (33 credits)
*Students who have taken CHEM 212 in CEGEP are exempt and must replace these credits with elective credits.
-
BIOL 200 Molecular Biology (3 credits)
Overview
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2024
Instructors: Champetier, Serge; Hastings, Kenneth E M; Lasko, Paul; Turney, Shaun; Reyes Lamothe, Rodrigo (Fall)
-
BIOL 202 Basic Genetics (3 credits)
Overview
Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.
Terms: Winter 2025
Instructors: Moon, Nam Sung; Nilson, Laura; Schoen, Daniel J; Hipfner, David; Champetier, Serge (Winter)
-
BIOL 301 Cell and Molecular Laboratory (4 credits)
Overview
Biology (Sci) : An introduction to biology research and communication with a focus on cell and molecular biology. Through conducting a series of project-based experiments and writing a final report, molecular and synthetic biology techniques such as gene cloning, manipulation, protein isolation and characterization and how research is conducted, analyzed and communicated will be addressed. In addition, an introduction to bioinformatics methods and their role in analysis will be provided.
Terms: Fall 2024, Winter 2025
Instructors: Hayer, Arnold; Harrison, Paul; Zheng, Huanquan; Leroux, Maxime (Fall) Zheng, Huanquan; Harrison, Paul; Leroux, Maxime; Hayer, Arnold (Winter)
Fall or Winter
1 hour lecture and one 6-hour laboratory
Prerequisites: BIOL 200, BIOL 201 (or ANAT 212/BIOC 212); or BIOL 219
Restrictions: Not open to students who have taken or are taking BIOC 300, or BIOC 220 and BIOC 320. Requires departmental approval.
For approval email maxime.leroux [at] mcgill.ca. Specify your ID number as well as the term and two lab day preferences.
-
CHEM 212 Introductory Organic Chemistry 1 (4 credits) *
Overview
Chemistry : A fundamental study of aliphatic compounds and saturated functional groups including modern concepts of bonding, reaction mechanisms, conformational analysis, spectroscopy, and stereochemistry.
Terms: Fall 2024, Summer 2025
Instructors: Vlaho, Danielle; Huot, Mitchell; Sirjoosingh, Pallavi; Tsantrizos, Youla S; Pavelka, Laura; Luedtke, Nathan (Fall) Sirjoosingh, Pallavi; Vlaho, Danielle; Huot, Mitchell (Summer)
Fall, Summer
Restriction: Not open to students registered in Chemistry or Biochemistry. Not open to students who have taken or are taking CHEM 211, CHEM 242, or equivalent.
Each lab section is limited enrolment
Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().
-
CHEM 222 Introductory Organic Chemistry 2 (4 credits) *
Overview
Chemistry : Modern spectroscopic techniques for structure determination. The chemistry of alcohols, ethers, carbonyl compounds, and amines, with special attention to mechanistic aspects. Special topics.
Terms: Winter 2025, Summer 2025
Instructors: Vlaho, Danielle; Huot, Mitchell; Sirjoosingh, Pallavi; Moitessier, Nicolas; Luedtke, Nathan (Winter) Vlaho, Danielle; Huot, Mitchell (Summer)
-
PHGY 200 Cutting-Edge Research in Physiology (1 credit)
Overview
Physiology : An overview of physiology through an examination of current research topics and experimental approaches. Emphasis is placed on applications of physiology to modern medicine and careers in physiology.
Terms: This course is not scheduled for the 2024-2025 academic year.
Instructors: There are no professors associated with this course for the 2024-2025 academic year.
Restriction(s): Open to students registered in Core Liberal Physiology, Major Physiology and Honours Physiology programs.
1. Fall
2. 1 hour lecture per week
-
PHGY 209 Mammalian Physiology 1 (3 credits)
Overview
Physiology : Physiology of body fluids, blood, body defense mechanisms, muscle, peripheral, central, and autonomic nervous systems.
Terms: Fall 2024
Instructors: Vollrath, Melissa; Ragsdale, David S; Shrier, Alvin; Cook, Erik; Aguer, C茅line (Fall)
Fall
3 hours lectures weekly
Prerequisites: BIOL 112, CHEM 110, CHEM 120, PHYS 101 or PHYS 131, and PHYS 102 or PHYS 142. Pre-/co-requisites: BIOL 200, CHEM 212 or equivalent.
Restriction: Not open to students who have taken PHGY 211 or students who are taking and who have taken NSCI 200.
Restriction: For students in the Faculty of Science, and other students by permission of the instructor
-
PHGY 210 Mammalian Physiology 2 (3 credits)
Overview
Physiology : Physiology of cardiovascular, respiratory, digestive, endocrine and renal systems.
Terms: Winter 2025
Instructors: Vollrath, Melissa; Takano, Tomoko; Lauzon, Anne-Marie; White, John H; Aguer, C茅line (Winter)
Winter
3 hours lectures weekly
Prerequisites: BIOL 112, CHEM 110, CHEM 120, PHYS 101 or PHYS 131, and PHYS 102 or PHYS 142. Pre-/co-requisite: BIOL 200, BIOL 201, BIOC 212, CHEM 212 or equivalent.
Restriction: For students in the Faculty of Science, and other students by permission of the instructor
Although PHGY 210 may be taken without the prior passing of PHGY 209, students should note that they may have some initial difficulties because of lack of familiarity with some basic concepts introduced in PHGY 209
-
PHGY 212 Introductory Physiology Laboratory 1 (1 credit)
Overview
Physiology : Exercises illustrating fundamental principles in physiology: Biological Signals Acquisitions, Blood, Immunology, Neurophysiology, Neuromuscular Physiology.
Terms: Fall 2024
Instructors: Vollrath, Melissa; Glavinovic, Mladen I; Mandl, Judith (Fall)
(One 3-hour lab and one 1-hour lecture every second week.)
Corequisite: PHGY 209.
Restrictions: Required for Physiology students enrolled in PHGY 209. Open to BA &Sc. students and to others by permission of the instructor. Not open to students who have taken PHGY 212D1/D2.
Note: For students in a Physiology program, PHGY 212 should be taken concurrently with PHGY 209.
-
PHGY 213 Introductory Physiology Laboratory 2 (1 credit)
Overview
Physiology : Exercises illustrating fundamental principles in physiology: Central Nervous System, Cardiovascular, Respiration, Exercise Physiology, Molecular Endocrinology.
Terms: Winter 2025
Instructors: Guevara, Michael R; Magder, Sheldon A; White, John H; Vollrath, Melissa (Winter)
(One 3-hour lab and one 1-hour lecture every second week.)
Prerequisite: PHGY 212
Corequisite: PHGY 210.
Restrictions: Required for Physiology students enrolled in PHGY 210. Open to BA &Sc. students and to others by permission of the instructor. Not open to students who have taken PHGY 212D1/D2.
Note: For students in a Physiology program, PHGY 213 should be taken concurrently with PHGY 210.
-
PHGY 312 Respiratory, Renal, and Cardiovascular Physiology (3 credits)
Overview
Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in renal, respiratory and cardiovascular functions explored beyond the introductory level.
Terms: Winter 2025
Instructors: Hanrahan, John W; Martin, James G; Shrier, Alvin; Magder, Sheldon A (Winter)
-
PHGY 313 Blood, Gastrointestinal, and Immune Systems Physiology (3 credits)
Overview
Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in immunology, blood and fluids, and gastrointestinal physiology.
Terms: Winter 2025
Instructors: Mandl, Judith; Blank, Volker Manfred; Vollrath, Melissa; Fritz, J枚rg; Quail, Daniela (Winter)
Complementary Courses (15 credits)
3 credits from:
-
BIOC 212 Molecular Mechanisms of Cell Function (3 credits)
Overview
Biochemistry : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.
Terms: Winter 2025
Instructors: Vera Ugalde, Maria; Pause, Arnim; Reinhardt, Dieter; Kazak, Lawrence; Cockburn, Katie (Winter)
-
BIOL 201 Cell Biology and Metabolism (3 credits)
Overview
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2025
Instructors: Brouhard, Gary; Hekimi, Siegfried; Zheng, Huanquan; Champetier, Serge (Winter)
3 credits from:
-
PHGY 311 Channels, Synapses and Hormones (3 credits)
Overview
Physiology : In-depth presentation of experimental results and hypotheses on cellular communication in the nervous system and the endocrine system.
Terms: Fall 2024
Instructors: Cooper, Ellis; Sj枚str枚m, Jesper; Krishnaswamy, Arjun; Sharif Naeini, Reza (Fall)
Fall
3 hours of lectures per week; 1-3 hours optional lab/demonstration/tutorial arranged for a maximum of 3 afternoons per term
Prerequisite: PHGY 209 or permission of the instructor.
-
PHGY 314 Integrative Neuroscience (3 credits)
Overview
Physiology : In depth presentation of experimental results and hypotheses underlying our current understanding of how single neurons and ensembles of neurons encode sensory information, generate movement, and control cognitive functions such as emotion, learning, and memory, during voluntary behaviours.
Terms: Fall 2024
Instructors: Chacron, Maurice; Pack, Christopher; Shmuel, Amir; Vollrath, Melissa; Lomber, Stephen; Brandon, Mark; Bashivan, Pouya (Fall)
Fall
3 hours of lectures per week
Prerequisites: PHGY 209
3 credits from:
-
BIOL 309 Mathematical Models in Biology (3 credits)
Overview
Biology (Sci) : Application of finite difference and differential equations to problems in cell and developmental biology, ecology and physiology. Qualitative, quantitative and graphical techniques are used to analyze mathematical models and to compare theoretical predictions with experimental data.
Terms: Fall 2024
Instructors: Bub, Gil; Guichard, Frederic (Fall)
-
BIOL 373 Biometry (3 credits)
Overview
Biology (Sci) : Elementary statistical methods in biology. Introduction to the analysis of biological data with emphasis on the assumptions behind statistical tests and models. Use of statistical techniques typically available on computer packages.
Terms: This course is not scheduled for the 2024-2025 academic year.
Instructors: There are no professors associated with this course for the 2024-2025 academic year.
Fall
2 hours lecture and 2 hours laboratory
Prerequisite: MATH 112 or equivalent
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
-
COMP 204 Computer Programming for Life Sciences (3 credits)
Overview
Computer Science (Sci) : Computer Science (Sci): Computer programming in a high level language: variables, expressions, types, functions, conditionals, loops, objects and classes. Introduction to algorithms, modular software design, libraries, file input/output, debugging. Emphasis on applications in the life sciences.
Terms: Fall 2024, Winter 2025
Instructors: Becerra, David (Fall) Siddiqi, Kaleem (Winter)
Co-requisite: BIOL 112
Restrictions: Not open to students who have taken or are taking COMP 202, COMP 208, or GEOG 333; not open to students who have taken or are taking COMP 206 or COMP 250.
To take COMP 204, students should have a solid understanding of pre-calculus fundamentals such as polynomial, trigonometric, exponential, and logarithmic functions.
-
COMP 250 Introduction to Computer Science (3 credits)
Overview
Computer Science (Sci) : Mathematical tools (binary numbers, induction,recurrence relations, asymptotic complexity,establishing correctness of programs). Datastructures (arrays, stacks, queues, linked lists,trees, binary trees, binary search trees, heaps,hash tables). Recursive and non-recursivealgorithms (searching and sorting, tree andgraph traversal). Abstract data types. Objectoriented programming in Java (classes andobjects, interfaces, inheritance). Selected topics.
Terms: Fall 2024, Winter 2025
Instructors: Alberini, Giulia (Fall) Alberini, Giulia (Winter)
-
PSYC 305 Statistics for Experimental Design (3 credits)
Overview
Psychology : An introduction to the design and analysis of experiments, including analysis of variance, planned and post hoc tests and a comparison of anova to correlational analysis.
Terms: Fall 2024, Winter 2025
Instructors: Falk, Carl (Fall) Kreitewolf, Jens; Miocevic, Milica (Winter)
Fall and Winter
Prerequisite: PSYC 204 or equivalent
This course is required of all students who propose to enter an Honours or Major program in Psychology
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
Upper-Level Physiology (ULP) Courses
6 credits selected from the Upper-Level Physiology (ULP) course list as follows:
* The 6-credit course PHGY 459D1/D2 equals 3 credits of ULP and 3 credits of electives.
** The 9-credit course PHGY 461D1/D2 equals 3 credits of ULP and 6 credits of electives.
-
BIOL 532 Developmental Neurobiology Seminar (3 credits)
Overview
Biology (Sci) : Discussions of all aspects of nervous system development including pattern formation, cell lineage, pathfinding and targeting by growing axons, and neural regeneration. The basis for these discussions will be recent research papers and other assigned readings.
Terms: Winter 2025
Instructors: Van Meyel, Donald; Kania, Artur; Fournier, Alyson Elise; Cloutier, Jean-Francois; Ruthazer, Edward (Winter)
-
BMDE 505 Cell and Tissue Engineering (3 credits)
Overview
Biomedical Engineering : Application of the principles of engineering, physical, and biological sciences to modify and create cells and tissues for therapeutic applications will be discussed, as well as the industrial perspective and related ethical issues.
Terms: Winter 2025
Instructors: Prakash, Satya (Winter)
(3-0-6)
1.5 hours lecture/1.5 hours seminar per week
Restriction: graduate and final year undergraduate students from physical, biological, and medical science, and engineering.
-
BMDE 519 Biomedical Signals and Systems (3 credits)
Overview
Biomedical Engineering : An introduction to the theoretical framework, experimental techniques and analysis procedures available for the quantitative analysis of physiological systems and signals. Lectures plus laboratory work using the Biomedical Engineering computer system. Topics include: amplitude and frequency structure of signals, filtering, sampling, correlation functions, time and frequency-domain descriptions of systems.
Terms: Fall 2024
Instructors: Kearney, Robert E (Fall)
(3-0-6)
Prerequisites: Satisfactory standing in U3 Honours Physiology; or U3 Major in Physics-Physiology; or U3 Major Physiology-Mathematics; or permission of instructor
-
EXMD 502 Advanced Endocrinology 1 (3 credits)
Overview
Experimental Medicine : This course is designed for U3 students who are in a major or honours program in anatomy, biology, biochemistry or physiology and for graduate students. A multidisciplinary approach will be used to teach biosynthesis and processing of hormones, their regulation, function and mechanism of action. The material will cover hypothalamic, pituitary, thyroid, atrial and adrenal hormones as well as prostaglandins and related substances.
Terms: Fall 2024
Instructors: Kokoeva, Maia; Stroh, Thomas; Bateman, Andrew; Ali, Suhad; Morris, David; Giguere, Vincent; Laporte, Stephane; Rocheleau, Christian; Kiss, Robert; Murshed, Monzur (Fall)
Fall
-
EXMD 503 Advanced Endocrinology 02 (3 credits)
Overview
Experimental Medicine : Study of the parathyroids, gut and pancreatic hormones and growth factors. In addition, the role of hormones and growth factors in reproduction and fetal maturation will be discussed.
Terms: Winter 2025
Instructors: Bateman, Andrew; Kokoeva, Maia (Winter)
Winter
-
EXMD 506 Advanced Applied Cardiovascular Physiology (3 credits)
Overview
Experimental Medicine : Offered in conjunction with the Department of Physiology. Current topics, methods and techniques for studying the cardiovascular system. Basic and applied cardiac electrophysiology, mechanisms of pacemaker activity, arrhythmias, the effects of drugs on cardiac functions, fetal circulation, coronary circulation, mechanics of blood flow, cardiovascular diseases, renal and neural control of the circulation, and cardiac assist devices.
Terms: Fall 2024
Instructors: Schwertani, Adel; Bottega, Natalie Ann; Dandona, Kshitij Badal; Bernier, Martin Louis; Genest, Jacques Jean; Shum-Tim, Dominique; Guevara, Michael R; de Varennes, Benoit; Friedrich, Matthias Gero (Fall)
-
EXMD 507 Advanced Applied Respiratory Physiology (3 credits)
Overview
Experimental Medicine : Offered in conjunction with the Department of Physiology. In depth coverage of respiratory biology including: functional anatomy of the respiratory system, pulmonary statics and dynamics, chest wall and respiratory muscles, ventilation and perfusion, control of breathing, and defense mechanisms. This course is aimed at providing a solid grounding in pulmonary biology and its research applications.
Terms: Fall 2024
Instructors: Petrof, Basil; Azuelos, Ilan; Kristof, Arnold Scott; Kaminska, Marta; Smith, Benjamin; Martin, James G; Eidelman, David H; Lauzon, Anne-Marie; Hussain, Sabah N A; Kimoff, John R (Fall)
Fall
Prerequisite: PHGY 313
-
EXMD 508 Advanced Topics in Respiration (3 credits)
Overview
Experimental Medicine : Offered in conjunction with the Department of Physiology. In depth coverage of developmental physiology, pulmonary vascular physiology, biology of airway smooth muscle, respiratory epithelium and molecular biology of respiratory muscles. Dyspnea, mechanical ventilation and respiratory failure will also be covered. This course emphasizes application of respiratory biology to basic and applied research and touches on pulmonary pathophysiology.
Terms: Winter 2025
Instructors: Fixman, Elizabeth Dee (Winter)
Winter
Prerequisite: EXMD 507
-
MIMM 414 Advanced Immunology (3 credits)
Overview
Microbiology and Immun (Sci) : An advanced course serving as a logical extension of MIMM 314. The course will integrate molecular, cellular and biochemical events involved in the ontogeny of the lymphoid system and its activation in the immune response. The course will provide the student with an up-to-date understanding of a rapidly moving field.
Terms: Fall 2024
Instructors: Fritz, J枚rg (Fall)
Fall
3 hour lecture
Prerequisite: MIMM 314
-
MIMM 509 Inflammatory Processes (3 credits)
Overview
Microbiology and Immun (Sci) : This course concentrates on the non-specific aspects of the immune response, an area which is not adequately covered by the other immunology courses presented at the university. Interactions between guest researchers (from 不良研究所 and other universities) and students will be furthered.
Terms: Winter 2025
Instructors: Rauch, Joyce; Di Battista, Giovanni (John) (Winter)
-
PHGY 425 Analyzing Physiological Systems (3 credits)
Overview
Physiology : An introduction to quantitative analysis of physiological data, both to the mode of thinking and to a set of tools that allows accurate predictions of biological systems. Examples will range from oscillating genetic networks to understanding higher brain function. Modelling and data analysis through examples and exercises will be emphasized.
Terms: Fall 2024
Instructors: Cook, Erik; Glavinovic, Mladen I; Baker, Curtis L; Bashivan, Pouya (Fall)
-
PHGY 451 Advanced Neurophysiology (3 credits)
Overview
Physiology : Topics of current interest in neurophysiology including the development of neurons and synapses, physiology of ionic channels, presynaptic and postsynaptic events in synaptic transmission and neuronal interactions in CNS function.
Terms: Fall 2024
Instructors: Cooper, Ellis; Krishnaswamy, Arjun; Bourque, Charles W; Chacron, Maurice; Suvrathan, Aparna (Fall)
Fall
3 hours lecture
Prerequisite: PHGY 311 or equivalent
Restriction: Departmental approval required
-
PHGY 459D1 Physiology Seminar (3 credits) *
Overview
Physiology : Discussion of topics in mammalian, cellular and molecular physiology. Students will be required to write one essay and make at least one oral presentation per term. A final course essay is required.
Terms: Fall 2024
Instructors: Hanrahan, John W; Shrier, Alvin; White, John H; Lukacs, Gergely; Brown, Claire; Prager-Khoutorsky, Maria (Fall)
Fall
2 hours seminar
Prerequisite: permission of instructors
Required course for U3 Honours students.
Students must register for both PHGY 459D1 and PHGY 459D2.
No credit will be given for this course unless both PHGY 459D1 and PHGY 459D2 are successfully completed in consecutive terms
-
PHGY 459D2 Physiology Seminar (3 credits) *
Overview
Physiology : See PHGY 459D1 for course description.
Terms: Winter 2025
Instructors: Hanrahan, John W; Finnson, Kenneth; Philip, Anie; Shrier, Alvin; Pack, Christopher; Rousseau, Simon; Chen, Brian (Winter)
Winter
Prerequisite: PHGY 459D1
No credit will be given for this course unless both PHGY 459D1 and PHGY 459D2 are successfully completed in consecutive terms
-
PHGY 461D1 Experimental Physiology (4.5 credits) **
Overview
Physiology : Individual project work under the supervision of Departmental Staff members.
Terms: Fall 2024
Instructors: Orlowski, John; Vollrath, Melissa (Fall)
Fall
Restrictions: Departmental approval required. This course is a requirement for U3 students in the Honours Physiology program, the Major Program in Physiology and Mathematics, and the Major program in Physiology and Physics, and is open to a limited number of other U3 Physiology students.
Students must register for both PHGY 461D1 and PHGY 461D2.
No credit will be given for this course unless both PHGY 461D1 and PHGY 461D2 are successfully completed in consecutive terms
-
PHGY 461D2 Experimental Physiology (4.5 credits) **
Overview
Physiology : See PHGY 461D1 for course description.
Terms: Winter 2025
Instructors: There are no professors associated with this course for the 2024-2025 academic year.
Winter
Prerequisite: PHGY 461D1
No credit will be given for this course unless both PHGY 461D1 and PHGY 461D2 are successfully completed in consecutive terms
-
PHGY 488 Stem Cell Biology (3 credits)
Overview
Physiology : The main concepts in stem cell biology: embryonic stem cells, induced pluripotent stem cells, cancer stem cells, stem cells populations of many adult tissues, applications of stem cell biology and ethical issues surrounding stem cell use in research and medicine. The major experimental methods and laboratory techniques in stem cell biology.
Terms: Fall 2024
Instructors: Nijnik, Anastasia; Chang, Natasha; Ernst, Carl; Gregorieff, Alex; Eliopoulos, Nicoletta; Philip, Anie; Stifani, Stefano; Moeun, Brenden; Eppert, Kolja; Pastor, William (Fall)
Prerequisite(s): PHGY 313 or by permission of instructor.
Restriction(s): Registration is on a first-come, first-served basis.
Restriction(s): Not open to students who are taking or have taken ANAT 416.
Critical reading of peer-reviewed journal papers, practice in oral presentations of scientific material and participation in group discussions.
-
PHGY 502 Exercise Physiology (3 credits)
Overview
Physiology : Behaviour of physiological processes in response to physical effort, in areas such as structural basis of muscle contraction, thermoregulation during exercise, mechanics and energetics of muscle contraction, fuel utilization, fatigue, physiological adjustments during exercise and influence of training.
Terms: Winter 2025
Instructors: Rousseau, Simon; Comtois, Alain Steve; Martin, James G; Magder, Sheldon A; Hussain, Sabah N A; Lands, Larry; Petrof, Basil (Winter)
-
PHGY 508 Advanced Renal Physiology (3 credits)
Overview
Physiology : Advanced concepts in selected areas of kidney physiology, including the glomerulus, renal cell biology, kidney development, membrane and epithelial transport, hormones and autacoids, kidney transplantation, bioengineering and regenerative medicine.
Terms: This course is not scheduled for the 2024-2025 academic year.
Instructors: There are no professors associated with this course for the 2024-2025 academic year.
Fall. Offered in conjunction with the Department of Medicine.
Prerequisite (Undergraduate): PHGY 312 or the equivalent
Restriction: Open to advanced undergraduate and graduate students
-
PHGY 513 Translational Immunology (3 credits)
Overview
Physiology : Advanced key concepts in immunology as they relate to health and disease, including infectious diseases, non-infectious diseases and autoimmunity, and cancer immunology.
Terms: Winter 2025
Instructors: Quail, Daniela; Behr, Marcel A; Rauch, Joyce; Antel, Jack P; Bernard, Nicole F; Schurr, Erwin; Ward, Brian; Fritz, J枚rg; Nijnik, Anastasia; Mandl, Judith (Winter)
-
PHGY 515 Blood-Brain Barrier in Health and Disease (3 credits)
Overview
Physiology : Molecular and cellular mechanisms underlying the organization and regulation of the blood-brain barrier, highlighting neurological diseases associated with the blood-brain barrier breakdown and give an overview of experimental approaches to study blood-brain barrier.
Terms: Fall 2024
Instructors: Prager-Khoutorsky, Maria; Zhang, Ji; Kostikov, Alexey; Munter, Lisa; Rudko, David; Diaz, Roberto; Stratton, Jo Anne (Fall)
-
PHGY 516 Physiology of Blood
(3 credits)
Overview
Physiology : Bone marrow hematopoiesis, with emphasis on regulation of stem cell proliferation and differentiation along hematopoietic pathways. Formation and differentiation of red and white blood cells and some of the diseases associated with hematopoiesis will be covered. Emphasis will be given to the molecular mechanisms involved in the normal and pathological conditions.
Terms: Winter 2025
Instructors: Blank, Volker Manfred; Pantopoulos, Konstantinos; Nijnik, Anastasia (Winter)
Winter
2 hours lecture plus 1 hour seminar weekly
-
PHGY 518 Artificial Cells (3 credits)
Overview
Physiology : Physiology, biotechnology, chemistry and biomedical application of artificial cells, blood substitutes, immobilized enzymes, microorganisms and cells, hemoperfusion, artificial kidneys, and drug delivery systems. PHGY 517 and PHGY 518 when taken together, will give a complete picture of this field. However, the student can select one of these.
Terms: Fall 2024
Instructors: Chang, Thomas Ming Swi; Shum-Tim, Dominique; Prakash, Satya; Hoesli, Corinne; Chen, Guojun (Fall)
Fall
Prerequisite (Undergraduate): permission of instructors.
-
PHGY 520 Ion Channels (3 credits)
Overview
Physiology : A discussion of the principal theories and interesting new developments in the study of ion channels. Based on a textbook, computer exercises and critical reading and presentation of research papers. Topics include: Properties of voltage-and ligand-gated channels, single channel analysis, structure and function of ion channels.
Terms: Fall 2024
Instructors: Sharif Naeini, Reza; Ragsdale, David S; Shrier, Alvin; Hanrahan, John W; Seguela, Philippe; Bowie, Derek (Fall)
Winter
Offered in even numbered years
1 1/2 hour lecture, 1 1/2 hour seminar
Prerequisite: PHGY 311
Priority to Graduate and Honours students; others by permission of instructors.
-
PHGY 524 Chronobiology (3 credits)
Overview
Physiology : An introduction to the field of chronobiology. The aim is to provide basic instruction on different types of biological rhythms, with particular focus on circadian rhythms.
Terms: Fall 2024
Instructors: Cermakian, Nicolas; Bernard, Daniel; Storch, Kai-Florian (Fall)
-
PHGY 525 Cortical Plasticity (3 credits)
Overview
Physiology : An examination of cortical plasticity following peripheral and central nervous damage from a systems/cognitive neuroscience perspective. Focus is on sensory systems and animal models, including the following topics: ocular dominance columns, retinal lesions, blindness, deafness, cochlear implants, barrel fields, amputation, stroke, and hemispherectomy. Experimental approaches to be considered include: electrophysiological recording, psychophysics, behaviour, and functional imaging.
Terms: Fall 2024
Instructors: Lomber, Stephen (Fall)
-
PHGY 531 Topics in Applied Immunology (3 credits)
Overview
Physiology : Seminar format course in which experts in immunologic mechanisms of resistance against a variety of infectious diseases, including AIDS, malaria, and tuberculosis oversee student moderators in their presentation of recent scientific literature in the field.
Terms: Fall 2024
Instructors: Mandl, Judith; Clarke, Paul; King, Irah; Melichar, Heather; Bashivan, Pouya (Fall)
-
PHGY 550 Molecular Physiology of Bone (3 credits)
Overview
Physiology : Students will develop a working knowledge of cartilage and bone. Discussion topics will include: molecular and cellular environment of bone; heritable and acquired skeletal defects; research models used to study metabolic bone disease.
Terms: Fall 2024
Instructors: Murshed, Monzur; Rauch, Frank; St-Arnaud, Rene; Siegel, Peter; Tiedemann, Kerstin; Moffatt, Pierre; Stone, Laura; Willie, Bettina; Marulanda Montoya, Juliana (Fall)
-
PHGY 552 Cellular and Molecular Physiology (3 credits)
Overview
Physiology : Discussions of recent significant advances in our understanding of the gene products involved in diverse cellular signalling pathways. Topics will include cell-surface hormone receptors, nuclear steroid hormone receptors, and ion channels and transporters. Students will present and critically evaluate experimental approaches, results and interpretations of selected research publications.
Terms: Winter 2025
Instructors: Orlowski, John; White, John H; Stochaj, Ursula; Bernard, Daniel (Winter)
Winter
1 hour lecture, 2 hours seminar weekly
Prerequisite: PHGY 311
Preference will be given to Physiology Honours and Graduate students
-
PHGY 556 Topics in Systems Neuroscience (3 credits)
Overview
Physiology : Topics of current interest in systems neurophysiology and behavioural neuroscience including: the neural representation of sensory information and motor behaviours, models of sensory motor integration, and the computational analysis of problems in motor control and perception. Students will be expected to present and critically discuss journal articles in class.
Terms: Winter 2025
Instructors: Guitton, Daniel E; Baker, Curtis L; Cook, Erik; Pack, Christopher; Peyrache, Adrien; Krishna, Suresh; Bashivan, Pouya; Mohajerani, Majid (Winter)
Winter
Restriction: Permission of the instructor required.
Restriction: Not open to students who have taken PHGY 456
-
PHGY 560 Light Microscopy-Life Science (3 credits)
Overview
Physiology : Introduction to optics, light microscopy imaging and data analysis for life scientists.
Terms: Winter 2025
Instructors: Brown, Claire (Winter)
Winter
Prerequisites: BIOL 301 or permission of instructors.
-
PSYC 470 Memory and Brain (3 credits)
Overview
Psychology : Memory systems are studied with an emphasis on the neural computations that occur at various stages of the processing stream, focusing on the hippocampus, amygdala, basal ganglia, cerebellum and cortex. The data reviewed is obtained from human, non-human primates and rodents, with single unit recording, neuroimaging and brain damaged subjects.
Terms: This course is not scheduled for the 2024-2025 academic year.
Instructors: There are no professors associated with this course for the 2024-2025 academic year.
-
PSYT 500 Advances: Neurobiology of Mental Disorders (3 credits)
Overview
Psychiatry : Current theories on the neurobiological basis of most well known mental disorders (e.g. schizophrenia, depression, anxiety, dementia). Methods and strategies in research on genetic, physiological and biochemical factors in mental illness will be discussed. Discussion will also focus on the rationale for present treatment approaches and on promising new approaches.
Terms: Winter 2025
Instructors: Wong, Tak Pan; Nagy, Corina; Chakravarty, Megha; Tritsch, Nicolas; Beaulieu, Serge; Gobbi, Gabriella; Poirier, Judes; Srivastava, Lalit K; Leyton, Marco; Silveira, Patricia (Winter)
Winter
3 hours
Prerequisite (Undergraduate): BIOC 212 and BIOC 311, or BIOC 312, or BIOL 200 and BIOL 201, or PHGY 311, or PSYC 308 and an upper-level biological science course with permission of the instructors, or equivalent. Basic knowledge of cellular and molecular biology is required.
Restriction: Open to U3 and graduate students only.
Restriction: Graduate Studies: strongly recommended for M.Sc. students in Psychiatry.